

Getting Started with
Apps for SharePoint

Office 365

 Hands-on lab

In this lab you will get hands-on experience working with the

new SharePoint App model. Through the exercises in this lab

you will learn how to create and test a SharePoint-hosted app

as well as a provider-hosted app.

This document is provided for informational purposes only and Microsoft makes no warranties, either express or implied, in this

document. Information in this document, including URL and other Internet Web site references, is subject to change without notice.

The entire risk of the use or the results from the use of this document remains with the user. Unless otherwise noted, the companies,

organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted in examples herein are

fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is

intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the

rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted

in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express

written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter

in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document

does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Copyright 2014 © Microsoft Corporation. All rights reserved.

Microsoft, Internet Explorer, Microsoft Azure, Microsoft Office, Office 365, Visual Studio, and Windows are trademarks of the

Microsoft group of companies.

All other trademarks are property of their respective owners.

Getting Started with Apps for SharePoint

 Page | 3

Exercise 1: Creating and Debugging a SharePoint-hosted

App

You must have an Office 365 tenant to complete this lab. To sign up for an Office 365 developer

subscription:

1. Navigate to http://msdn.microsoft.com/en-us/library/office/fp179924(v=office.15).aspx.

2. Under the heading Sign up for an Office 365 Developer Site click Try It Free.

3. Fill out the form to obtain your trial O365 subscription.

4. When completed, you will have a developer site in the [subscription].sharepoint.com domain

located at the root of your subscription (e.g. https://mysubscription.sharepoint.com)

5. You must have a Microsoft account to complete this lab. If you do not have one, navigate to

https://signup.live.com/signup.aspx?lic=1 and create one.

1. Using the browser, navigate to your Office 365 developer site and log on using your credentials.

2. On your developer workstation, launch Visual Studio as administrator.

3. Create a new project in Visual Studio 2013 by selecting the menu command File > New >

Project.

4. In the New Project dialog, find the App for SharePoint 2013 project template under the

Templates > Visual C# > Office / SharePoint > Apps section. Enter a name of My First

SharePoint Hosted App, a location of C:\DevProjects and a Solution name of

MyFirstSharePointHostedApp and then click OK button.

http://msdn.microsoft.com/en-us/library/office/fp179924(v=office.15).aspx
https://mysubscription.sharepoint.com/
https://signup.live.com/signup.aspx?lic=1
https://github.com/OfficeDev/TrainingContent/blob/master/O3651-7 Setting up your Developer environment in Office 365/Images/1.png?raw=true

Getting Started with Apps for SharePoint

 Page | 4

5. In the New app for SharePoint wizard, enter the URL for your Office 365 Developer site and

select SharePoint-hosted for the app hosting model. When done, complete the wizard by

clicking the Finish button.

6. Examine the default project setup for a SharePoint-Hosted app. As you can see, it is like a

traditional SharePoint solution-based project because you have a Features and Packages node.

7. Note that there are project folders named Content, Images & Pages are actually SharePoint

Project Items (SPI) that are Modules and will provision their contents to the respective folders in

the app web that will be generated upon installing the app.

 Content/App.css: main Cascading Style Sheet used for the app.

 Images/AppIcon.png: default image used for the app.

 Pages/Default.aspx: default start page for the app.

 Scripts/App.js: main JavaScript file which is referenced by Default.aspx.

https://github.com/OfficeDev/TrainingContent/blob/master/O3651-3 Getting started with Apps for SharePoint/Images/Fig01.png
https://github.com/OfficeDev/TrainingContent/blob/master/O3651-3 Getting started with Apps for SharePoint/Images/Fig02.png

Getting Started with Apps for SharePoint

 Page | 5

 AppManifest.xml app manifest containing app metadata such as its Name, Product ID, App

Version Number and minimum version for the SharePoint host environment.

8. Examine the app's start page by right-clicking Pages/Default.aspx file and selecting Open.

 Look at the links to other JavaScript libraries inside the PlaceHolderAdditionalPageHead

placeholder.

 There are references to the jQuery library and the App.js file.

 There is a reference to the App.css file as well.

9. Using the Solution Explorer tool window, right-click the Scripts/App.js file and select Open.

 This file has four functions and a few variables.

 The function $(document).ready(function()){ … } gets a reference to the client object model

(CSOM) ClientContext object and then gets a reference to the current site.

 The getUserName() function is one that will usually be deleted from the project when you get

more experience with SharePoint-Hosted apps. It uses the CSOM to get the name of the

current user logged in.

 The last two functions are used as the success and failed callback when the CSOM request

completes.

10. Now it is time to update the app homepage. Using the Solution Explorer tool window, right-click

the Pages/Default.aspx file and select Open. After the existing div, add the following markup

↪ <input type="button" value="Push Me" onclick="hello();" />

↪ <div id="displayDiv"></div>

11. Inside default.aspx, locate the PlaceHolderPageTitleInTitleArea placeholder control and

replace the content inside with the title My Hello World App.

12. In this step you will update the app script file. Using the Solution Explorer tool window, right-click

the Scripts/App.js file and select Open. Add the following function to the bottom of the file that

will be called when you click the button.

↪ function hello() {

↪ $get("displayDiv").innerHTML = "<p>Hello, Apps!</p>";

↪ }

13. Save all changes: File > Save All.

14. Build and Test the Project by pressing [F5] or Debug > Start Debugging.

15. The installation process for an app will take a moment to complete. If you watch the lower-left

corner of Visual Studio, it will tell you what it is currently doing. If you want more information,

click the Output tab at the bottom of Visual Studio to see a log of what is going on. If the Output

tab isn’t present, select the window from the menu in Visual Studio 2013 using the menu

command View > Output.

Getting Started with Apps for SharePoint

 Page | 6

16. Once the app has been installed, Internet Explorer will launch and navigate to the app’s start page

default.aspx page.

17. When the page loads, click the Push me button to see your text get written to the page:

18. Once you have tested the app, close the browser to stop the debugging session and return to

Visual Studio.

19. In Visual Studio, save all changes using File > Save All.

https://github.com/OfficeDev/TrainingContent/blob/master/O3651-3 Getting started with Apps for SharePoint/Images/Fig04.png

Getting Started with Apps for SharePoint

 Page | 7

Exercise 2: Using jQuery in a SharePoint-hosted App

In this lab, you will continue working with the SharePoint-hosted app project you created in the previous

lab exercise. However, you will rewrite the JavaScript code to use the jQuery library to initialize the app

and create an event handler using best practice techniques.

1. Open default.aspx and ensure that the HTML code inside the PlaceHolderMain content control

looks exactly like the following code listing.

↪ <asp:content contentplaceholderid="PlaceHolderMain" runat="server">

↪

↪ <div>

↪ <p id="message">

↪ <!-- The following content will be replaced with the user name when you run the app - see App.js -

->

↪ initializing...

↪ </p>

↪ </div>

↪

↪ <input type="button" value="Push Me" onclick="hello();" />

↪ <div id="displayDiv"></div>

↪

↪ </asp:content>

2. Remove the onclick attribute from the input element and add an id of cmdPushMe so the

element definition looks like this.

↪ <input id="cmdPushMe" type="button" value="Push Me" />

3. Save your changes and close default.aspx.

4. Right-click on app.js and select Open to open this JavaScript file in an editor window.

5. Delete all the code inside app.js except for the 'use strict'; statement at the top.

6. Inside app.js, add two new functions into onPageLoad and onButtonClicked.

↪ 'use strict';

↪

↪ function onPageLoad() {

↪ }

↪

↪ function onButtonClicked() {

↪ }

7. At the top of App.js right after the use strict statement, add a jQuery document ready event

handler to execute the onPageLoad function once the page loads and the JavaScript DOM is

available for access within the browser.

Getting Started with Apps for SharePoint

 Page | 8

↪ 'use strict';

↪

↪ $(document).ready(onPageLoad);

↪

↪ function onPageLoad() {

↪ }

↪

↪ function onButtonClicked() {

↪ }

8. Implement onPageLoad with the following code to display a text message on the page when the

document ready event handle executes and to register the onButtonClick function as an event

handler for the input control with the id of cmdPushMe.

↪ function onPageLoad() {

↪ $("#message").text("Hello from the document ready event handler");

↪ $("#cmdPushMe").click(onButtonClicked);

↪ }

9. Implement the onButtonClicked function to write the text message "Hello Apps" into the div

element with the id of displayDiv and to use the jQuery css method to style thediv element with

a margin div of 16px, a font color of green and a font-size of 32px.

↪ function onButtonClicked () {

↪ $("#displayDiv")

↪ .text("Hello Apps")

↪ .css({ "margin": "16px", "color": "green", "font-size": "32px" });

↪ }

10. Once the code inside your app.js file looks like the following code listing, you are ready to test

your work.

↪ 'use strict';

↪

↪ $(document).ready(onPageLoad);

↪

↪ function onPageLoad() {

↪ $("#message").text("Hello from the document ready event handler");

↪ $("#cmdPushMe").click(onButtonClicked);

↪ }

↪ function onButtonClicked() {

↪ $("#displayDiv")

↪ .text("Hello Apps")

↪ .css("margin": "16px", "color": "green", "font-size": "32px" });

↪ }

11. Save all changes by executing the File > Save All menu command.

Getting Started with Apps for SharePoint

 Page | 9

12. Build and Test the Project by pressing [F5] or Debug > Start Debugging.

13. Once the app has been installed, Internet Explorer will launch and navigate to the app’s start page

default.aspx page.

14. When the page loads, you should see the message "Hello from the document ready event

handler" on the page.

15. Click the Push me button to see your text get written to the page with your custom font styles.

16. Once you have tested the app, close the browser to stop the debugging session and return to

Visual Studio.

17. In Visual Studio, save all changes using File > Save All.

18. Close the MyHelloWorldApp project.

https://github.com/OfficeDev/TrainingContent/blob/master/O3651-3 Getting started with Apps for SharePoint/Images/Fig05.png

Getting Started with Apps for SharePoint

 Page | 10

Exercise 3: Creating and Debugging a Provider-Hosted App

In this exercise you will create and test a simple Provider-Hosted App. This will give you opportunity to

observe the basic differences between developing SharePoint-hosted apps and cloud-hosted apps using

Visual Studio 2013. Note that this lab will not involve security topics such as app authentication. Instead,

you will configure the app to use Internal security so that you can get the app up and running without

worrying about how to configure app authenhtication.

1. Launch Visual Studio 2013 as administrator if it is not already running.

2. In Visual Studio select File > New > Project.

3. In the New Project dialog select the App for SharePoint 2013 template under the Templates >

Visual C# > Office / SharePoint > Apps section.

4. Enter a Name of MyFirstCloudHostedApp and a Location of C:\DevProjects\ and then click OK

when you are done.

5. Next, you will see the New app for SharePoint wizard which begins by prompting you with the

Specify the App for SharePoint Settings page. Enter the URL to your Office 365 developer site,

configure the app's hosting model to be Provider-hosted and click Next.

https://github.com/OfficeDev/TrainingContent/blob/master/O3651-3 Getting started with Apps for SharePoint/Images/Fig06.png

Getting Started with Apps for SharePoint

 Page | 11

6. On the Specify the web project type page, select the ASP.NET Web Forms Application setting

and click Next.

7. On the Configure authentication settings page, accept the default settings and click Finish.

8. Examine the structure of the Visual Studio solution that has been created. As you can see, the

Visual Studio solution created for a Provider-Hosted app has two projects and is very different

from the Visual Studio solution for a SharePoint-Hosted app which has only one project.

https://github.com/OfficeDev/TrainingContent/blob/master/O3651-3 Getting started with Apps for SharePoint/Images/Fig07.png
https://github.com/OfficeDev/TrainingContent/blob/master/O3651-3 Getting started with Apps for SharePoint/Images/Fig08.png
https://github.com/OfficeDev/TrainingContent/blob/master/O3651-3 Getting started with Apps for SharePoint/Images/Fig09.png

Getting Started with Apps for SharePoint

 Page | 12

9. Observe that top project named MyFirstCloudHostedApp contains only two files:

AppManifest.xml and AppIcon.png. This effectively means the app will not install any resources

into the SharePoint host such as pages. This project only contains app metadata and an image file

that get added to the SharePoint host when the app gets installed.

10. Take a look at the project below named MyFirstCloudHostedAppWeb which will provide the

implementation of the app's remote web. This project is a standard ASP.NET Web application but

it contains a little extra stuff in it:

 TokenHelper.cs: This is a code file provided by Microsoft to make it easier to obtain the user

identity, the OAuth token or the token provided by highly trusted apps. You will ignore this

for now.

 Default.aspx.cs: (Inside the Pages folder expand out the Default.aspx file to see this) the

code behind file for the page contains logic to call back into SharePoint to obtain the title of

the host web. The code is written to assume this app will use OAuth authentication.

 SharePointContext.cs: This is a code file provided by Microsoft to encapsulate all the

information from SharePoint. You will ignore this for now.

 Scripts: A common folder to place JavaScript files.

11. By default a Provider-Hosted app is expecting to use external authentication with either OAuth or

S2S which are topics covered in later modules. In the following steps you will disable the

configuration for external authentication to eliminate security requirements which would

complicate building and testing our first Provider-Hosted app.

12. In the Solution Explorer within the MyFirstCloudHostedApp project, right-click

AppManifest.xml and select View Code.

13. Inside AppManifest.xml, locate the <AppPrincipal> node.

14. Replace the contents with <Internal/> so it looks like the following markup:

↪ <AppPrincipal>

https://github.com/OfficeDev/TrainingContent/blob/master/O3651-3 Getting started with Apps for SharePoint/Images/Fig10.png

Getting Started with Apps for SharePoint

 Page | 13

↪ <Internal/>

↪ </AppPrincipal>

15. Now it's time to write a bit of server-side C# code which will run in the remote web of the app

which is something that isn’t possible to do in a SharePoint-Hosted app. In the Solution Explorer

tool window within the MyFirstCloudHostedAppWeb project, right-click Default.aspx and

select Open.

16. Replace the existing <body> element on the page with an ASP.NET literal control with an id of

Message and a hyperlink control with an id of HostWebLink so the body of the page looks like

the following markup:

↪ <body>

↪ <form id="form1" runat="server">

↪ <asp:Literal ID="Message" runat="server" />

↪ <p><asp:HyperLink ID="HostWebLink" runat="server" /></p>

↪ </form>

↪ </body>

17. In the Solution Explorer within the MyFirstCloudHostedAppWeb project, right-click the code

beind files named Default.aspx.cs file and select Open to open the file in a code editor window.

18. Delete the existing Page_PreInit method and all the code inside.

19. Replace the contents of the Page_Load method with the following code:

↪ this.Message.Text = "My first SharePoint Provider-Hosted App!";

↪

↪ var hostWeb = Page.Request["SPHostUrl"];

↪ this.HostWebLink.NavigateUrl = hostWeb;

↪ this.HostWebLink.Text = "Back to host web";

20. Save all changes by using the File > Save All menu command.

21. Build and Test the Project by pressing [F5] or Debug > Start Debugging.

22. Visual Studio 2013 may prompt you with a Security Alert to trust a self-signed certificate. You are

not using a certificate in this solution, so just click Yes (and again to get past the extra

confirmation prompt) to continue.

23. Once the solution has been deployed, Internet Explorer will launch and navigate to the start page

of the app in the remote web.

24. Notice when the page loads it is just a plain white page with the text you added and a link back to

the hosting site.

Getting Started with Apps for SharePoint

 Page | 14

25. Test the Back to host web link to make sure it correctly redirects you back to the host web which

should be your Office 365 developer site.

26. Close the browser to stop the debugger and go back to Visual Studio.

In this exercise you created a simple SharePoint Provider-Hosted app. As in the last exercise, you didn’t do

much in this exercise beyond creating and testing the simplest cloud-hosted app possible. In later labs

you will build on this foundation to add more capabilities to SharePoint apps.

https://github.com/OfficeDev/TrainingContent/blob/master/O3651-3 Getting started with Apps for SharePoint/Images/Fig11.png

