

Windows Server
2012 R2 – Windows
PowerShell
Fundamentals

Windows Server

2012 R2

 Hands-on lab

Windows PowerShell is a command-line shell and scripting

language that helps IT professionals achieve greater control

and productivity. Using a new, admin-focused scripting

language, more than 230 standard command-line tools, and

consistent syntax and utilities, Windows PowerShell allows IT

professionals to more easily control system administration and

accelerate automation.

Produced by HynesITe, Inc.

Version 5.2

11/13/2013

This document supports a preliminary release of a software product that may be changed substantially prior to final commercial

release. This document is provided for informational purposes only and Microsoft makes no warranties, either express or implied, in

this document. Information in this document, including URL and other Internet Web site references, is subject to change without

notice. The entire risk of the use or the results from the use of this document remains with the user. Unless otherwise noted, the

companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted in examples herein

are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or

event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without

limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or

transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without

the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter

in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document

does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Copyright 2013 © Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, Windows 7, Windows PowerShell, Windows Server 2012, and Windows Vista are trademarks of the

Microsoft group of companies.

All other trademarks are property of their respective owners.

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 3

Introduction

Estimated time to complete this lab

30 minutes

Objectives

In this lab, you will learn the fundamentals of using Windows PowerShell commands, known as cmdlets,

including the following techniques:

 Exploring Windows PowerShell Help

Windows PowerShell has a powerful documentation mechanism. Administrators can query the

help subsystem with a unified command set. Developers are provided with a set of common tools

to lower the time invested in documentation.

 Constructing a pipeline

Windows PowerShell is different from other shells because it does not use strings as parameters;

instead it uses .NET objects which can be navigated, processed, reflected, and formatted.

 Using formatting commands

Windows PowerShell does not limit the kind of formatting that can be applied to a simple object

nor does it place any restrictions on the destination of the output. Developers can extend the

wide range of available choices through the development of cmdlets.

 Using filtering and sorting commands

As a complement to formatting, filtering and sorting commands are very useful for cmdlet output

manipulation. Windows PowerShell provides typical filtering and sorting cmdlets for most tasks,

and developers can also extend them by creating new cmdlets.

 Using -WhatIf and -Confirm

These are common switches you can apply to cmdlets.

 Working with variables

Like any Windows-based scripting language, Windows PowerShell has variables too, but they are

much more powerful than the variables in older scripting languages. Windows PowerShell

variables are actually mapped to underlying classes in the Microsoft® .NET Framework. And in the

Framework, variables are objects, meaning they can store data and also manipulate it in many

ways.

 Working with providers

The provider represents a set of stored data (e.g. the Microsoft Windows Registry, the Windows

file system, Active Directory) that can be accessed and navigated through Windows PowerShell

commands.

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 4

Prerequisites

Before working on this lab, you must have:

1. An understanding of concepts such as virtual machines, virtual hard disks, and virtual networks.

2. The ability to work in a command-line environment.

Overview of the lab

Windows PowerShell is a command-line shell and scripting language that helps IT professionals achieve

greater control and productivity. Using a new admin-focused scripting language, more than 230 standard

command-line tools, and consistent syntax and utilities, Windows PowerShell allows IT professionals to

more easily control system administration and accelerate automation.

Intended audience

This lab is intended for network administrators who wish to learn the Windows PowerShell interface and

language.

Virtual machine technology

This lab is completed using virtual machines that run on Windows Server 2012 Hyper-V technology. To

log on to the virtual machines, press CTRL+ALT+END and enter the following credentials:

 Username: Administrator

 Password: Passw0rd!

Computers in this lab

This lab uses computers as described in the following table. Before you begin the lab, you must ensure

that the virtual machines are started and then log on to the computers.

Computer Role Configuration

DC Domain controller Domain controller

 All user accounts in this lab use the password Passw0rd!

Note regarding pre-release software

Portions of this lab include software that is not yet released, and as such may still contain active or known

issues. While every effort has been made to ensure this lab functions as written, unknown or unanticipated

results may be encountered as a result of using pre-release software.

Note regarding user account control

Some steps in this lab may be subject to user account control. User account control is a technology which

provides additional security to computers by requesting that users confirm actions that require

administrative rights. Tasks that generate a user account control confirmation are denoted using a shield

icon. If you encounter a shield icon, confirm your action by selecting the appropriate button in the dialog

box that is presented.

Note on activation

The virtual machines for these labs may have been built by using software that has not been activated.

This is by design in the lab to prevent the redistribution of activated software. The unactivated state of

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 5

software has been taken into account in the design of the lab. Consequently, the lab is in no way affected

by this state. For operating systems other than Windows 8, please press Cancel or Close if prompted by an

activation dialog box. If you are prompted by an Activate screen for Windows 8, press the Windows key to

display the Start screen.

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 6

Exercise 1: Exploring Windows PowerShell

In this exercise, you will explore several Windows PowerShell commands and features including help,

object formatting, and safety features.

 Perform all the exercises on DC.

 Every command has three different levels of help available:

1. The default view shows the command description and syntax.

2. The detailed view adds usage examples and complete documentation.

3. The full view adds command’s technical details including parameter and return value

data types.

Reviewing the help available in Windows PowerShell

In this step, you will learn how to view the different levels of help content available for a cmdlet.

1. To open a new Windows PowerShell command window, on the taskbar, click Windows

PowerShell.

2. At the Windows PowerShell command prompt, type the following command, and then press

ENTER to see a list of available help topics.

↪ help *

3. The command will fill an entire screen and then pause. Press ENTER to show the next output line,

or press SPACE BAR to advance to the next page.

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 7

Figure 1: Executing the Help command

 In the output you can see a second column with a value of Alias, Cmdlet, Provider, or HelpFile. An alias is

an alternative name for a command, usually an abbreviation or a name used by other shells for similar

functionality. Cmdlets are .NET classes that are exposed as APIs, commands, and GUIs. Providers are

extensions to Windows PowerShell that provide features such as policy verification or metadata

augmentation. Help files contain information for different topics, including command descriptions and

topics on how to extend Windows PowerShell.

4. Press SPACE BAR until the command prompt returns. Alternatively, you can type the letter Q to

cancel the output.

5. To view help information about the Get-Command cmdlet, at the Windows PowerShell command

prompt, type the following command, and then press ENTER.

↪ help Get-Command

 The help contains the syntax for the command as well as a brief description.

Figure 2: Obtaining help for the Get-Command cmdlet

6. To see detailed help for the Get-Command cmdlet, at the Windows PowerShell command

prompt, type the following command, and then press ENTER.

↪ help Get-Command -Detailed

 The output includes details about the parameters for the cmdlet, as well as some examples.

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 8

Figure 3: Obtaining help for the Get-Command cmdlet in detailed mode

7. To view the entire help content for the Get-Command cmdlet, at the Windows PowerShell

command prompt, type the following command, and then press ENTER.

↪ help Get-Command –Full

Figure 4: View the entire help content for the Get-Command cmdlet

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 9

 The full help for the cmdlet includes parameter data types and notes. This is a technical view of the

command’s help.

 Help regarding conceptual topics in Windows PowerShell begins with the prefix about_. To display help

about a Windows PowerShell concept, type Get-Help followed by the concept name. To view a list of

conceptual topics, type Get-Help about.

List the commands available in Windows PowerShell

In this step, you will list all available commands in Windows PowerShell.

1. To view the list of available commands, at the Windows PowerShell command prompt, type the

following command, and then press ENTER.

↪ Get-Command

2. Review the list of commands available. Take note of the naming convention for commands with a

CommandType of Cmdlet.

Figure 5: List of Windows PowerShell commands

 Windows PowerShell uses verb-noun naming conventions to make cmdlets discoverable and obvious in

what they do.

3. At the command prompt, type the following command, but do not press ENTER.

↪ Get-C

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 10

4. Press TAB. Windows PowerShell expands the command to Get-CAAuthorityInformationAccess.

5. Press TAB again. The command is changed to Get-CACrlDistributionPoint.

 If you do not see these cmdlets, make sure you are performing the steps on DC.

6. You can continue pressing TAB to cycle through all the available commands that begin with

Get-C. Similarly, you can cycle backwards by pressing SHIFT-TAB.

 You can easily display a list of available Windows PowerShell commands. In addition, you can enter a

portion of a command name and use tab-completion to resolve the partial command to a full Windows

PowerShell command.

7. Press ENTER to execute the expanded Windows PowerShell command.

Format and filter output using Windows PowerShell

In this step, you will learn how to use command parameters and cmdlets to filter data. Also, you will learn

how to format the displayed output.

1. To view a list of services installed on the computer, at the Windows PowerShell command prompt,

type the following command, and then press ENTER.

↪ Get-Service

 A list of services is displayed.

Figure 6: The Get-Service command

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 11

 Windows PowerShell provides a complete set of verbs to query and manipulate services, including Get,

New, Restart, Resume, Set, Start, Stop, and Suspend. To view a list of service related commands type

Get-Command -Noun Service.

2. Enter the following to view the status of the Spooler service:

↪ Get-Service –Name Spooler

Figure 7: Status of the Spooler service

 The Get-Service command resolves the first input as the name parameter when you do not specify a

parameter name for the input.

3. Enter the following command to obtain the same result as the previous step.

↪ Get-Service Spooler

 You can use positioned or named parameters when you invoke cmdlets. Windows PowerShell provides

built-in code that relieves cmdlet developers from having to parse program parameters.

4. Type the following command, and then press ENTER to view a list of all services that begin with

M.

↪ Get-Service M*

 The status of all the services beginning with M is shown.

Figure 8: Status of the services beginning with M

 Many cmdlets allow the use of wildcards. You can use the wildcard to filter the results to a subset of all

results.

5. Enter the following to see the same list of services. This time, the output is shown in list format.

↪ Get-Service M* | Format-List

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 12

Figure 9: Using the format-list command

 In this example, there are two commands separated by a pipe (|) character. This means that the output

of the first command is used as the input to the second command.

6. Enter the following to see the same output, this time shown in a custom format.

↪ Get-Service M* | Format-Custom

 The status of all services beginning with M will be shown in the custom format.

Figure 10: Using the Format-Custom command

 Windows PowerShell includes several defined format commands, each one with many configuration

options. This provides a great deal of flexibility in output formatting. Developers can also create

additional format commands.

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 13

7. Type the following command, and then press ENTER to view all the running services that begin

with M.

↪ Get-Service M* | Where-Object {$_.Status -eq "Running"}

 Only services in a running state are shown this time.

Figure 11: Using the Where-Object command to filter the list to show only running services

 In this command:

– Where-Object is a command for performing a filter on the input.

– { } are delimiters for Windows PowerShell code blocks.

– $_ refers to the input object (all services that begin with M).

– -eq specifies that the left-hand argument, in this case the Status property ($_.Status), will be compared

for equality against the right-hand argument, the value “Running”.

8. To view all the stopped services that begin with M, type the following command, and then press

ENTER.

↪ Get-Service M* | Where {$_.Status -eq "Stopped"}

 Only those services that are stopped are shown.

Figure 12: Using the Where-Object command to filter the list to show only stopped services

 This is an example usage of the alias mechanism. Here, Where is an alias for the Where-Object

command.

9. To view a list of all services ordered by their status, type the following command, and then press

ENTER.

↪ Get-Service | Sort-Object Status

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 14

 The Sort-Object command can order objects returned by a previous cmdlet using one or more of their

properties. You can also use the alias Sort to refer to the Sort-Object command.

10. Type the following command, and then press ENTER to view the Name and DisplayName of all

services beginning with M, with the output ordered and grouped by Status.

↪ Get-Service M* | Sort-Object Status | Format-Table -GroupBy Status

Name, DisplayName

Figure 13: Using the Sort-Object and Format-Table command to group the output data

View object metadata

Everything in Windows PowerShell is a .NET object, and is available for reflection, including cmdlets,

services, and processes. Windows PowerShell extends the .NET type reflector to allow simpler access for

administrative purposes.

In this step, you will learn how to view the type members of those objects.

1. To view the type metadata for the object output by the Get-Service command, type the following

command, and then press ENTER.

↪ Get-Service | Get-Member

 The type metadata for the object output by Get-Service is displayed. Note that the data type, in this

case the System.ServiceProcess.ServiceController class, is also displayed.

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 15

Figure 14: Using the Get-Member command to view object metadata

2. To view the type metadata for the object output by the Get-Process command, type the following

command, and then press ENTER.

↪ Get-Process | Get-Member

Figure 15: Members of the System.Diagnostics.Process type

3. To create a new object of type System.Diagnostics.Process and view the type metadata for the

class, type the following command, and then press ENTER.

↪ New-Object System.Diagnostics.Process | Get-Member

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 16

 The type metadata for the System.Diagnostics.Process class is shown.

Figure 16: Type members of a new object

4. Type the following command, and then press ENTER to view a list of services that the Spooler

service depends on.

↪ Get-Service Spooler | Select-Object ServicesDependedOn

 A list of services that the Spooler service requires to start is displayed.

Figure 17: Inspecting the ServicesDependedOn property of the Spooler service

Using Show-Command

Metadata information can also be used to identify the inputs needed for a specific command and to

retrieve information about the command. Windows PowerShell provides a graphical aid to provide the

command input.

In this task, you will learn how to retrieve and provide information needed in a graphical manner by using

the Show-Command cmdlet.

1. To view the input metadata for the Get-Service command, type the following command, and then

press ENTER.

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 17

↪ Show-Command Get-Service

 The input metadata fields for the Get-Service command are displayed. This is also an interactive window

that allows you to type the necessary fields to retrieve information from local or remote systems.

2. To view the results of Get-Service, in ComputerName, type localhost, and then click Run.

3. Review the results of the execution of Get-Service with the value for the ComputerName

parameter set to localhost.

Figure 18: Get-Service with ComputerName set to localhost

Using whatif and confirm

Windows PowerShell allows administrators to safely test and use commands. In this step, you will use the

whatif and confirm commands.

 The [Command] -WhatIf flag shows you the results without actually performing the action.

 The [Command] -Confirm flag asks you to confirm the operation before it executes.

1. Type the following command, and then press ENTER to see a list of services that would be

stopped if you ran the Stop-Service command.

↪ Stop-Service M* -WhatIf

 A list of services that would be stopped is displayed.

Figure 19: The Stop Service command with the WhatIf flag specified

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 18

2. Type the following command, and then press ENTER to confirm whether or not to stop each

service.

↪ Stop-Service M* -Confirm

 For each service beginning with M, you will be asked if it should be stopped. For this lab, reply No in

each case.

Figure 20: The Stop-Service command with the confirm flag specified

Creating and manipulating variables

In this step, you will work with variables in Windows PowerShell. You will learn about their declaration,

usage, and behavior.

1. To create a variable to hold a string value, type the following command, and then press ENTER.

↪ $var = "Hi there"

 With this command, you created a variable named var, and you assigned the string value Hi there to it.

 A variable in Windows PowerShell must begin with the dollar sign ($). If special characters are needed in

a variable name, curly braces can be used to surround the variable name ({}).

2. To output the value stored in this variable, type the following command, and then press ENTER.

↪ $var

 A better way to output variable values is to use a cmdlet named Write-Host before the variable name,

clearly showing it will output the values to the host.

↪ Write-host $var

The results should be similar to the following screenshot.

Figure 21: Printing a variable value

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 19

 By default, a variable will have a null value. Null values in Windows PowerShell are represented as $null.

3. Variables in Windows PowerShell can be listed and accessed under a special location. To display

the list of currently declared variables, type the following command, and then press ENTER.

↪ Get-Variable

Figure 22: List of currently declared PowerShell variables

4. By default, variables in Windows PowerShell are non-typed, which means they can hold an

arbitrary value. To change the variable value and type to an integer, type the following command,

pressing ENTER after each line.

↪ $var = 123

↪ $var

 Now the variable is holding the integer value 123.

Figure 23: Assigning an integer value

5. Variables can also contain lists (similar to arrays). To change the value to an array of integers, type

the following commands, pressing ENTER after each line.

↪ $var = 1,2,3

↪ $var

 This time, the variable is holding an array of integers.

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 20

Figure 24: Creating an array of integers

6. To see the new type of the variable, type the following command, and then press ENTER.

↪ $var.GetType().FullName

 The variable is now an array object of type System.Object[].

Figure 25: Obtaining the type of the variable

 Arrays can be also manipulated through their .NET methods. For example, they can be queried on their

length.

7. To use the Length property to retrieve the number of elements of the array, type the following

command, and then press ENTER.

↪ $var.Length

 The size of the array is displayed.

Figure 26: Displaying the array length

8. You can also access individual elements within an array by using square brackets ([]). To retrieve

the second element of the array, type the following command, and then press ENTER.

↪ $var[1]

 Arrays in Windows PowerShell are zero-based, which means that the first element will always be at

position (index value) 0.

 The value of the second element of the array is displayed.

Figure 27: Retrieving an element of the array

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 21

9. You can also type a variable by prefixing its declaration with the desired data type name. To re-

declare the variable as an array of integers, type the following command, and then press ENTER.

↪ [int[]] $var = (1,2,3)

10. To assign the string value 0123 to the third element of the array, and then display it, type the

following commands, pressing ENTER after each one.

↪ $var[2] = "0123"

↪ $var[2]

Figure 28: Implicit conversion from string to integer

 Examining the output of the variable, the string 0123 was converted into the number 123. Windows

PowerShell implicitly converted the stored value to match the destination variable type.

 Implicit type conversions are done only for typed variables. Unlike strongly typed languages where a

variable can only be assigned an object of the correct type, Windows PowerShell allows the assignment

of any object, as long as it is convertible to the target type, by the extensive use of implicit conversions.

11. When an implicit conversion is not available, it displays an error. To attempt to set a string value

that cannot be converted, type the following command, and then press ENTER.

↪ $var[2] = "A string value"

 The following error is displayed.

Figure 29: Type conversion error

Working with strings

In this step, you will use different operators to deal with strings values in Windows PowerShell.

1. To create and initialize two string variables named var1 and var2, type the following commands,

pressing ENTER after each one.

↪ $var1 = "Hello "

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 22

↪ $var2 = "world"

2. To use the plus (+) operator to concatenate the two string variables, type the following command,

and then press ENTER.

↪ $var1 + $var2

 The result of this operation is a new Hello World string, as shown in the following screen shot.

Figure 30: Concatenating two string variables

 Windows PowerShell defines the behavior of the + operator for numbers, strings, arrays and hash

tables. Adding two numbers produces a numeric result following the numeric widening rules. Adding

two strings performs a string concatenation, resulting in a new string, and adding two arrays joins the

two arrays (array concatenation).

3. You can use the .NET String properties to inspect the string objects. To use the Length property to

obtain the size in characters of the previous string concatenation, type the following command,

and then press ENTER.

↪ ($var1 + $var2).Length

Figure 31: Using the Length property

4. Windows PowerShell also provides other kinds of binary operators, like comparison operators. To

verify if two strings are equal, type the following command, and then press ENTER,

↪ "John Smith" -eq "John Sanders"

 The result of the comparison is shown in the following screen shot.

Figure 32: Comparing two strings

 There are other comparison operators, like –ne (not equals) –gt (greater than), –lt (less than),

–ge (greater than or equal) and –le (less than or equals).

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 23

 For each of these operators there is also a base or unqualified operator form, like –eq and its two

variants –ceq and –ieq. The “c” variant is case-sensitive and the “I” variant is case-insensitive.

5. Formatting is a common task that can also be done in Windows PowerShell. To use a custom

format to display 12.4 as 12.40, type the following command, and then press ENTER.

↪ "{0:f2}" -f 12.4

 The output should look like the following screenshot.

Figure 33: Formatting decimal values

6. To display the same number as currency, and then to pad it to 10 characters aligned to the right,

type the following command, and then press ENTER.

 Use the vertical bars to see the added padding:

↪ "|{0,10:C}|" -f 12.4

 The currency symbol configured in the current culture of the local machine is used.

Figure 34: Formatting currency values

7. Date and time formatting can also be done. To display only hours and minutes from the current

date, type the following command, and then press ENTER.

↪ "{0:hh:mm}" -f (Get-Date)

Figure 35: Formatting date and time values

Creating a script file

Script files are used to store Windows PowerShell commands in a file, providing an easy way to run a list

of commands. You only need to tell Windows PowerShell to run the script file.

In this step, you will learn how to create and run script files. To understand the reasons behind the

security features of Windows PowerShell, you will be introduced to a Windows PowerShell security feature

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 24

called execution policies. The execution policy enables you to determine which Windows PowerShell

scripts (if any) will be allowed to run on your computer. Windows PowerShell has four different execution

policies:

 Restricted – No scripts are allowed to run. Windows PowerShell can only be used in interactive

mode.

 AllSigned – Only scripts signed by a trusted publisher can be run.

 RemoteSigned – Downloaded scripts must be signed by a trusted publisher before they can be

run.

 Unrestricted – No restrictions; all Windows PowerShell scripts can be run.

 When you first install Windows PowerShell, the default value for the execution policy will be set to

Restricted.

1. To display the current execution policy, type the following command, and then press ENTER.

↪ Get-ExecutionPolicy

Figure 36: The current execution policy is displayed

2. Before running a script file, you will have to change the execution policy. To change the execution

policy to RemoteSigned and verify the change, type the following commands, pressing ENTER

after each one.

↪ Set-ExecutionPolicy Unrestricted

↪ Get-ExecutionPolicy

 Changing the execution policy requires administrative privileges. If you are running Windows Vista or

Windows 7, on the Start menu, right-click the Windows PowerShell icon, and then click Run as

Administrator.

 For other platforms, either log in with an administrative account or open a Windows PowerShell console

by using the runas command and supplying appropriate credentials. For example:

runas /user:username PowerShell

where username is an account with administrative privileges.

Remember that it is best practice to use administrative privileges only for operations that require it.

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 25

Figure 37: Changing the execution policy

 More information on Windows PowerShell security can be found at: http://technet.microsoft.com/en-

us/magazine/2007.09.powershell.aspx.

3. To create the script file, on the taskbar, right-click the Windows PowerShell icon, and then click

Windows PowerShell ISE.

 To create script files, you don’t need a special editor. In this example you will use the Windows

PowerShell Integrated Scripting Environment (ISE). The Windows PowerShell ISE is a host application

that enables you to run commands, write, test, and debug scripts in a friendly, syntax-colored, Unicode-

compliant environment.

4. On the View menu, click Show Script Pane.

 The ISE has two windows, or panes, so you do not need to edit text in a separate application.

 The script pane at the top allows you to compose, edit, debug, and run functions and scripts.

Note that the script pane is not displayed by default. To display the script pane, on the View

menu, click Script Pane.

 The console pane at the bottom is used for running interactive commands, just as you would

in the Windows PowerShell text-based console.

5. In the script pane, type the following commands, pressing ENTER after each line.

↪ # test.ps1

↪ # Show Hello and time.

↪

↪ "" # Blank Line

↪ "Hello " + $env:UserName + "!"

↪ "Time is " + "{0:HH}:{0:mm}" -f (Get-Date)

↪ "" # Blank Line

6. To save the file as a Windows PowerShell script file, on the File menu, click Save As.

7. In the file name, type test.ps1, in the location, type C:\users\Administrator\Desktop, and then

click Save.

 When you create your script file, the filename must have a .ps1 extension.

8. Click in the command pane, type the following command, and then press ENTER.

↪ cd C:\users\Administrator\Desktop

9. To execute the script file you created in the previous step, type the following command, and then

press ENTER.

↪ .\test.ps1

mailto:labs@holsystems.com
http://technet.microsoft.com/en-us/magazine/2007.09.powershell.aspx
http://technet.microsoft.com/en-us/magazine/2007.09.powershell.aspx

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 26

 You can follow the same procedure to execute scripts in the Windows PowerShell text-based console.

From the ISE, you can also execute a script using the Run command on the File menu.

 Preceding the script name with directory information, in this case the current directory (.\), instructs

Windows PowerShell to run a script.

 There must be no space between .\ and the script name. Adding the .ps1 extension is optional. You

must specify the path to the script file, even if the script is in the current directory.

Figure 38: Running the script file from the current directory

10. To use the Invoke-Expression command as an alternative way of running the same script, type the

following command, and then press ENTER.

↪ Invoke-Expression "C:\Users\Administrator\Desktop\test.ps1"

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 27

Figure 39: Running the script file using Invoke-Expression

11. To use the invoke operator (&) to execute the command in the string that follows, type the

following command, and then press ENTER.

↪ & "C:\Users\Administrator\Desktop\test.ps1"

Figure 40: Running the script file using ampersand (&)

12. To close the test.ps1 script, on the test.ps1 tab, click the X.

 As an alternative, on the File menu, click Close.

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 28

 Many commands in the ISE have keyboard shortcuts. You can see the keyboard shortcuts to the right of

their respective commands in the menus at the top of the ISE. The keyboard shortcut to close the active

file in the script pane is Ctrl+F4.

Creating functions

In Windows PowerShell, you can declare functions. Functions are reusable pieces of code that can be

called as many times as you want after you declare them.

In this step, you will declare a function, learn about using different types of parameters, and specify

default values for these parameters.

1. In the Windows PowerShell ISE, press CTRL+N.

2. In the script pane, type the following code.

↪ function Get-Soup (

↪ [switch] $please,

↪ [string] $soup = "chicken noodle"

↪)

↪ {

↪ if ($please) {

↪ "Here's your $soup soup"

↪ }

↪ else {

↪ "No soup for you!"

↪ }

↪ }

 This command declares a Get-Soup function which will receive two parameters, $please and $soup.

3. To run the script, press F5, and then click the Script arrow to hide the script pane.

 It is not necessary to save a script before executing it in the ISE. This makes it easy to use the script pane

to quickly test commands and code snippets.

4. To call the script with no parameters, in the command pane, type the following command, and

then press ENTER.

↪ Get-Soup

5. To call the Get Soup function with the $please parameter, type the following command, and then

press ENTER.

 To specify a parameter declared as a switch, specify –parameter name after the function name.

↪ Get-Soup -please

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 29

 Since you didn’t specify a value for the $soup parameter, the default value (chicken noodle) is used.

6. To call Get-Soup specifying a value for $soup, type the following command, and then press

ENTER.

↪ Get-Soup –please tomato

Working with providers

Windows PowerShell providers enable you to access data that would not otherwise be easily accessible at

the command line. The data that a provider exposes appears in a drive, much like a hard drive, and is

presented in a consistent format that resembles the file system. You can use any of the built-in cmdlets

that the provider supports to manage the data in the provider drive, in addition to custom cmdlets that

are designed especially for the data. By default, Windows PowerShell includes several providers that allow

you to access common data stores in Windows, such as the file system, registry, and certificate store.

In this step, you will list the available providers and the drives which make use of these providers. You will

also create a new drive using the registry provider.

1. On the taskbar, click Windows PowerShell.

2. To display a list of the available providers, type the following command, and then press ENTER.

↪ Get-PSProvider

Figure 41: List of Windows PowerShell providers

3. To display a list of the available drives, type the following command, and then press ENTER.

↪ Get-PSDrive

Figure 42: List of Windows PowerShell drives

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 30

4. To create a new drive for the HKEY_CLASSES_ROOT hive in the registry using the Registry

provider, type the following command, and then press ENTER.

↪ New-PSDrive -Name HKCS -PSProvider Registry -Root

"HKEY_CLASSES_ROOT"

Figure 43: Adding a new Windows PowerShell drive

 As with the file system, the registry can also be modified using Windows PowerShell drives. Be aware

that when modifying the registry, changes may cause the system to fail.

5. To browse to the newly created drive, called HKCS, as if you were working with a drive in the file

system, type the following commands, pressing ENTER after each one.

↪ cd HKCS:

↪ dir .ht*

 This will set the current location to the newly created HKCS drive, and then display the list of registry

entries that match the filter expression.

 IMPORTANT: The trailing colon (:) after the drive name indicates a drive change which is different from

a folder change. The colon is necessary; otherwise, Windows PowerShell will display an error.

Figure 44: Browsing the HKCS drive

6. To change the current folder to another folder inside the HKCS drive, and then list its contents,

type the following commands, pressing ENTER after each line.

↪ cd .html

↪ dir

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 31

Figure 45: Listing a key of the registry as if it were a folder in the file system

 Many of the same commands used to manipulate the file system, such as cd and dir, also work with

other providers.

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 32

Exercise 2: Working with Windows PowerShell ISE

You can use the Windows PowerShell Integrated Scripting Environment (ISE) to create, run, and debug

commands and scripts. The Windows PowerShell ISE consists of the menu bar, Windows PowerShell tabs,

the toolbar, script tabs, a script pane, a console pane, a status bar, a text-size slider and context-sensitive

Help. It works for both local and remote scripts.

Using the Windows PowerShell ISE gives you many different advantages when creating scripts. Although it

can be used for interactive commands, the best use of the tool is for script creation and debugging.

Getting to know Windows PowerShell ISE

In this step, you will explore the layout of Windows PowerShell ISE.

1. To open a new Windows PowerShell ISE environment window, on the taskbar, right-click

Windows PowerShell, and then click Run ISE as Administrator.

Figure 46: Windows PowerShell ISE

2. On the View menu, click Show Script Pane.

 The command pane to the right shows a list of commands based on the modules that are currently

loaded.

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 33

Figure 47: Windows PowerShell ISE with the script pane displayed

The script pane and IntelliSense in Windows PowerShell ISE

In this step, you will learn how to use IntelliSense in the Windows PowerShell ISE script pane.

1. In the script pane, type Get-.

2. As you type, you will see a list of possible commands. Continue typing Get-Ser.

 Get-Service will be selected and the possible complete syntax will be displayed.

3. Press TAB.

4. Press SPACE BAR.

5. Type -.

 A list of possible parameters will appear.

6. Continue typing Computer, press TAB, and then press SPACE BAR.

7. Type DC.

8. Press F5 to execute the command.

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 34

The command pane in Windows PowerShell ISE

In this step, you will use the command pane in Windows PowerShell ISE.

1. In the command pane, in the Name box, type Get-Service.

 As you type, the commands will be filtered.

2. In the filtered results, click the Get-Service command.

 The parameters for the command will appear. Review the Default, DisplayName, and InputObject tabs.

3. In the ComputerName parameter, type DC, and then press F5 to run the command.

 Review the results of all available services on the target system.

4. In the Name parameter, type TermService, and then press F5 to run the command.

5. In the command pane, select the Insert option.

 The command will be inserted into the interactive Windows PowerShell console pane.

6. Expand Common Parameters.

7. Review the parameters list.

Snippets in Windows PowerShell ISE

The script pane in Windows PowerShell ISE has predefined blocks of code that assist you in creating your

scripts. Those blocks are called snippets. In this step, you will use snippets in the Windows PowerShell ISE.

1. In the script pane, delete any existing lines.

1.2. In the script pane, type the following command, and then press ENTER.

↪ $process = Get-WmiObject –Class win32_process

2.3. To access the snippets, press Ctrl+J, type foreach, and then press TAB.

 The following block will be displayed:

foreach ($item in $collection)

{

}

3.4. Replace $collection with $process.

4.5. Inside the script block, in between the curly braces, type the following command:

↪ $item.name

5.6. The complete script block will be:

↪ foreach ($item in $process)

↪ {

mailto:labs@holsystems.com

Windows Server 2012 R2 – Windows PowerShell Fundamentals

Lab created by HynesITe, Inc. For questions or comments, send an email message to labs@holsystems.com Page | 35

↪ $item.name

↪ }

6.7. Press F5 to execute the script.

 A list with the running processes in the system will be returned.

This is the end of the lab

mailto:labs@holsystems.com

