
C++ Renaissance Herb Sutter

C++ Renaissance Herb Sutter

1979-1989

Research: C
with Classes,

ARM C++

1989-1999

Mainstream

C++ goes to
town (& ISO,
& space, &c)

1999-2009

Coffee-based
languages for
productivity

Q: Can they
do everything

important?

2009-

Native code
invited back

from exile with
the Return of

the King:

Performance
Per Watt

C++ Renaissance Herb Sutter

C++ Renaissance Herb Sutter

3. Efficiency and performance optimization will get more,
not less, important. Those languages that already lend

themselves to heavy optimization will find new life; those
that don’t will need to find ways to compete and become

more efficient and optimizable. Expect long-term increased
demand for performance-oriented languages and systems.

from “The Free Lunch is Over,” December 2004

“ ”
Renaissance

1979-1989

Research: C
with Classes,

ARM C++

1989-1999

Mainstream

C++ goes to
town (& ISO,
& space, &c)

1999-2009

Coffee-based
languages for
productivity

Q: Can they
do everything

important?

2009-2019

Native code
invited back

from exile with
the Return of

the King:

Performance
Per $ (W|T|C)

C++ Renaissance Herb Sutter

Reality Check

“The world is built on … .”

C....
C++...
C#..
Cobol..
Fortran.
Java...
Javascript.
Perl...
Python..
Ruby

C
C++
C#
Cobol
Fortran
Java
Javascript
Perl
Python
Ruby

C++ Renaissance Herb Sutter

Efficiency Flexibility Abstraction
(OO,

Generics)

Productivity
(Automatic

Services, Tools)

C++ = C + efficient
abstraction.
Classes, templates.

   non-goal

Java, C# = productivity.
Mandatory metadata &
GC, JIT compilation.

at the
expense of

at the
expense of  

BOT – 1999,
2009 – EOT

C = efficient high-level
portable code.
Structs, functions.

  non-goal non-goal

C++ Renaissance Herb Sutter

 Locality is more than ever a first-order performance issue .

 Arrange your data carefully:
 First: Keep data that is not used together apart, on separate cache

lines. Avoids the invisible convoying of false sharing (ping-pong).

 Second: Keep data that is frequently used together close together.
If a thread that uses A frequently also needs B, try to put them in one
cache line .

 Third: Keep “hot” and “cold” data that is not used with the same
frequency apart. Fit “hot” data in the fewest possible cache lines and
memory pages, to reduce (a) the cache footprint and cache misses,
and (b) the memory footprint and virtual memory paging.

 Observations

 Access patterns matter:

 Linear = not bad.

 Random = awful.

 Vectors:

 Smaller = further left, faster.

 Lower curves = faster.

 Lists and sets:

 Bigger = further right, slower.

 On higher curves = slower.

You can see it trying to
prefetch, scrambling
madly to stay ahead

and keep the pipeline
full…!

array, vector

list, set

C++ Renaissance Herb Sutter

 Q: Is it faster to sum an array of ints, an equivalent list of ints,
or an equivalent set of ints? Which, how much so, and why?

 A1: Size matters. (Smaller = further left on the curve.)

 All those object headers and links waste space.

 A2: Traversal order can matter more. (Linear = lower curve.)

 Takes advantage of prefetching (as discussed).

 Takes advantage of modern processors: They can potentially zoom
ahead and make progress on several items in the array at the same
time. Pointer-chasing = keep hitting latency.

Mobile

C++ Renaissance Herb Sutter

– Version 1 Java .NET

Objective-C,
C & C++

incl. C++ wrappers
over Objective-C

Version 2+ Java,
C & C++ NDK

incl. Java-free
C++ apps

?

C++ Renaissance Herb Sutter

C++ Renaissance Herb Sutter

Datacenter

James Hamilton
http://perspectives.mvdirona.com/2010/09/18/OverallDataCenterCosts.aspx

C++ Renaissance Herb Sutter

Observations [Enterprise vs. Cloud]:

• People costs shift from top to nearly
irrelevant.

• Work done/$ and work done/W are what
really matters (S/W issues dominate).

• Expect high-scale service techniques
to spread to enterprise.

James Hamilton
VP & Distinguished Engineer, Amazon Web Services
http://www.mvdirona.com/jrh/TalksAndPapers/JamesHamilton_USENIX2009.pdf
http://perspectives.mvdirona.com/2010/09/18/OverallDataCenterCosts.aspx
http://mvdirona.com/jrh/TalksAndPapers/JamesHamilton_WhereDoesThePowerGo.pdf

“
”

Observations [Enterprise vs. Cloud]:

• People costs shift from top to nearly
irrelevant.

• Work done/$ and work done/W are what
really matters (S/W issues dominate).

• Expect high-scale service techniques
to spread to enterprise.

James Hamilton
VP & Distinguished Engineer, Amazon Web Services
http://www.mvdirona.com/jrh/TalksAndPapers/JamesHamilton_USENIX2009.pdf
http://perspectives.mvdirona.com/2010/09/18/OverallDataCenterCosts.aspx
http://mvdirona.com/jrh/TalksAndPapers/JamesHamilton_WhereDoesThePowerGo.pdf

“
”

Programmers & Admins
(Productivity = Coffee)

HW + Power = 88%
(Performance = Native)

Blowback to
(rest of) mainstream

C++ Renaissance Herb Sutter

My contribution to the fight against global warming is C++’s
efficiency: Just think if Google had to have twice as many
server farms! Each uses as much energy as a small town.

And it’s not just a factor of two…

Efficiency is not just running fast or running bigger
programs, it’s also running using less resources.

Bjarne Stroustrup, June 2011

“ ”

C++ Renaissance Herb Sutter

Server and Desktop

C++ Renaissance Herb Sutter

Renaissance

Efficiency
(Perf/$)

Flexibility
(Do What
You Need)

Abstraction
(OO,

Generics)

Productivity
(Automatic

Services, Tools)

1970s: C

1980s: Smalltalk, Ada,
C++

1990s: C++, Visual Basic,
Delphi, Java

2000s: .NET, Java,
Objective-C, C++, C

2010s: C++, C

C++ Renaissance Herb Sutter

C++ Renaissance Herb Sutter

Renaissance

1979-1989

Research: C
with Classes,

ARM C++

1989-1999

Mainstream

C++ goes to
town (& ISO,
& space, &c)

1999-2009

Coffee-based
languages for
productivity

Q: Can they
do everything

important?

2009-2019

Native code
invited back

from exile with
the Return of

the King:

Performance
Per $ (W|T|C)

Next

Exit
Moore

Harbinger:
recall

“power:
on-die…”

C++ Renaissance Herb Sutter

C++ Renaissance Herb Sutter

