Tira APl v. 0.4

Revision History

v.0.4 Sep 2005
Support for transmitting CCF is added
Capture in CCF format is added

v.0.3 Sep 2003
Introduced functions for Visual Basic support
tira_cleanup is introduced
applies to DLL version 1.03

v.0.2 Jul 2003
Calling convention of the callback is changed

Sep 2005, (C) Home Electronics

This document describes functions exported by Tira2.dll that provides simple and lightweight
interface to Tira-2 USB IR transmitters. This DLL takes care of Tira’s low level protocol and
especially of handling IR data, such as preparing data for sending to Tira. For technical support
regarding this API or Tira in general please email to tech-support@home-electro.com.

Because the APl is supplied as a separate DLL, upgrades are easy, and compatibility with future
devices is ensured. All you need is to replace the DLL with a newer version.

All functions will return 0 upon success. Non-zero results indicates error. However, error codes
are not defined unless specified for individual functions.

extern "C" _ stdcall int tira_init (void);

This function must be called before any of the other functions from this API. It creates and
initialize Tira service thread.

extern "C" _ stdcall int tira_cleanup (void);

This function releases all resources used by the DLL and terminates Tira service thread. After
calling this function it is safe to unload the DLL, if necessary.

extern "C" _ stdcall int tira_start (int PortID);

Connects to Tira installed on the specified com port. (Although Tira is a USB device, a virtual
COM port is created to make software development easier).

Note that port numbers start from zero. That means that “0” corresponds to COM1, “1”
corresponds to COM2 and so on.

If you use Tira with D200X driver, you need to use portiD 1024.

Tira must be installed on COM port from 2 to 256.

typedef int (__stdcall * tira six byte cb) (const char * eventstring);

extern "C" _ stdcall int tira_set_handler (tira_six byte cb cb);

When Tira receives IR signal the specified callback function will be called. Different IR signals are
represented by different event strings. Event strings are null-terminated, 13 bytes long strings.
Here is the example of six byta data string *5B8700001212”. Note that the memory holding the
event-string will be reused upon returning from the callback. Therefore the data from the string
must be copied elsewhere.

Note that the callback function is executed in a separate thread. Therefore the callback function
must be thread-safe.

#define MaxIRData 20

extern "C" _ stdcall int tira_get_ir data (
char IRDataString[MaxIRData],
int* DataSize);

This function presents alternative way of receiving “6 bytes” IR codes, without having to use
callback function. This function was introduced for use with Visual Basic applications, there
callback approach does not work.

extern "C" _ stdcall int tira_stop ()

This function disactivates Tira.

extern "C" _ stdcall int tira_start capture ();

Activates capture mode. In capture mode Tira yields complete information required to reproduce
an IR signal. After that user is to put a remote control about two inches from Tira and send an IR
code to Tira.

extern "C" _ stdcall int tira_get_captured data (
const unsigned char** data,
int* size);

After switching to capture mode periodically call tira get captured data. When returned
size and the pointer to a data is non-zero that indicates that Tira has received IR signal. The data
pointer returned by this function contains representation of the IR signal that can be used later for
transmission.

The data pointer is a heap allocated memory and your application is responsible for proper
freeing it once it is not needed. Basically, for every successful capture a new memory block is
allocated. If you do not free it, memory leak will occur. In order to free the memory block use
tira delete.

extern "C" _ stdcall int tira_get captured data vb (
unsigned char datal],
int* size);

Alternative function for retrieving captured IR codes. Unlike tira get captured data,
tira get captured data_ vb does not allocate new memory block. Instead it copies IR data
into user supplied memory block. *size must be set to the size of the memory block prior to
calling this function. Upon successful return from the call size is set to the actual number of
bytes required for the IR code. Use this functions for developing Visual Basic applications. See
supplied sample application for usage example.

extern "C" _ stdcall int tira_cancel_capture ();

This function cancels capture mode.

extern "C" _ stdcall int tira_delete (const unsigned char* ptr);

This function will free the memory block. Only memory blocks previously acquired from
tira get captured data can be freed with this function.

extern "C" _ stdcall int tira_access_feature (
unsigned int FeaturelD,
bool Write,
unsigned int* Value,
unsigned int Mask

)/

This allows read and write various parameters of the device and the library.

FeaturelD Description

0xF0000000 Controls capture mode. When set to 0, tira cature returns data in
proprietary format. When set to 1, tira capture returns data in
CCF format. Values other than 0 or 1 are not-defined. Mask is not
used and should be set to 0.

By default the capture is performed in proprietary format.

Return Value:
0 Returned on success.
1 Function failed, error accessing the feature
2 Function failed, feature is not implemented
Example (sets the library to capture in CCF mode):

unsigned int FeatureValue = 0x1;
tira_access_feature(

0xF0000000, /* FeatureID */
true, /* Write */
& FeatureValue, /* Need to pass address */

0x0) ; /* Mask */

extern "C" _ stdcall int tira_transmit (
int Repeat,
int Frequency,
const unsigned char* IRData,
const DataSize);

This function transmits IR code.

Parameters:

Data points to a data previously received from get captured data.

DataSize is the size of the data. Again, the size of the data must be the same as received from
get captured data.

Alternatively Data can point to a valid CCF strings. (CCF is format for IR codes widely used by
various remote controls).

Repeat indicates a number of times the IR code to be repeated. (Some equipment will not react
even to a valid IR code if it is not repeated several times. Repeat == 0 means the code to be
sent once, Repeat == 1 means the code to be sent twice, and so on.

Note that in most cases you can not simply call tira transmit several times to send repeat
codes. Repeated codes often differs from the initial ones. Plus delays between repeats must be
strictly observed. All this is handled by Tira.

Frequency refers to modulation frequency of the transmitted IR signal. Actual frequency of the
IR signal is embedded in the IR data returned by tira capture. You need to set this
parameter to -1.

Return Value:

On success tira_transmit returns 0.

Invalid Parameters: -1.The function will return —1 if the TRData is not recognized or CCF string is
not complete or not supported.

Example:

tira_transmit(
3, -1, “0000 0069 0001 0002 0015 0030 0030 0030 0045 00157, 59);

On the next page you will find a complete listing of a sample C/C++ applications that shows how
every call of this API is used.

// Tira Sample application
#include <windows.h>
#include <conio.h>
#include <iostream>

using namespace std;

int Error () {

"\n";

(const char * eventstring);

(tira six byte cb cb);

cout << "Last Error returned : " << GetLastError() <<
return 0;
bi
typedef int (_ stdcall * tira six byte cb)
typedef int (_ stdcall * t tira init) ();
typedef int (_ stdcall * t_tira_ set_handler)
typedef int (_ stdcall * t tira start) (int PortID);
typedef int (_ stdcall * t tira stop) ();
typedef int (_ stdcall * t tira start capture) ();
typedef int (_ stdcall * t tira cancel capture) ();
typedef int (_ stdcall * t tira get captured data)

(const unsigned char** data,
(__stdcall * t tira transmit)
repeat, int frequency,

typedef int
(int
typedef int

t tira init

t tira set handler
t tira start p _tira start = 0;

t tira stop p tira stop = 0;

t tira start capture p tira start capture = 0;
t tira cancel capture p tira cancel capture = 0;
t tira get captured data p tira get captured data
t_tira transmit p_tira transmit = 0;

t_tira delete p_tira delete = 0;

p tira init = 0;
p _tira set handler = 0;

int _ stdcall OurCalback(const char * eventstring)
cout << "IR Data " << eventstring << '\n';
return 0;

}i

int Help();

int main () {
// Load the DLL

HMODULE handle = LoadLibrary("Tira2.dll");
if (handle ==) return Error();

void* last;

last = p tira init = GetProcAddress (handle,
if (last == 0) return Error();
last = p tira set handler = (t_tira set handler)

"tira set handler");
if (last == 0)
last = p tira start =

return Error();
(t_tira start)

if (last == 0) return Error();

last = p tira stop = (t_tira stop)

if (last == 0) return Error();

last = p tira start capture = (t_tira start capture)

"tira start capture");
if (las 0) return Error();
last = p tira cancel capture =
"tira cancel capture");
if (last == 0) return Error();
last = p tira get captured data =
"tira get captured data");

const unsigned char* data,
(__stdcall * t tira delete) (const unsigned char* ptr);

GetProcAddress (handle,

GetProcAddress (handle,

(t_tira cancel capture)

(t_tira get captured data)

int* size);;

const dataSize);

0;

{

"tira init");

GetProcAddress (handle,

"tira start");
"tira stop");

GetProcAddress (handle,

GetProcAddress (handle,

GetProcAddress (handle,

if (last == 0) return Error();

last = p_tira transmit = (t_tira transmit) GetProcAddress (handle, "tira transmit");
if (last == 0) return Error();

last = p_tira delete = (t_tira delete) GetProcAddress (handle, "tira delete");

if (last == 0) return Error();

cout << "Calling tira_init ()\n\n";
p_tira init();

Help ()

bool CaptureActive = false;
const unsigned char* Data = 0;
int DataSize = 0;

cout << "\n>";
while (1) {
int res = -1;
Sleep(100) ;

if (CaptureActive) {
res = p_tira get captured data(&Data, &DataSize);
if (Data != 0 && DataSize != 0){
cout << "IR Code captured!\n";
CaptureActive = false;
}i
}i
char ¢ = 0;
if (kbhit ())
c = getche();
else
continue;

cout << '\n';

switch (c) {

case 'l': case '2': case '3': case '4':
case '5': case '6': case '7': case '8':
{
int p=c¢ - "'1";
res = p_tira start(p);
if (res == 0) cout << "Tira activated\n";
break;
bi
case 'S':
case 's':
res = p_tira stop();
if (res ==) cout << "Tira disactivated\n";
CaptureActive = false;
break;
case 'B':
case 'b':
res = p_tira set handler (OurCalback) ;
if (res ==) cout << "Callback activated\n";
break;
case 'C':
case 'c':
if (Data != 0) {
cout << "Disposing captured data...\n";
res = p_tira delete(Data);
if (res == 0) cout << "Memory freed\n";
Data = 0;

}i

res = p tira start capture();

if (res ==) cout << "Capture activated\n";
CaptureActive = (res == 0);

break;

case 'A':
case 'a
res = p _tira cancel capture();
if (res == 0) cout << "Capture disactivated\n";
CaptureActive = false;
break;

case 'T':
case 't':
if (Data == 0) {
cout << "There is nothing to transmit\n";
break;
}i

res = p tira transmit (2, /* repeat 3 times*/
-1, /* Use embedded frequency value*/
Data,
DataSize);

if (res == 0) cout << "IR code transmitted\n";

CaptureActive = false;
break;

case 'D':

case 'd':
res = p _tira delete(Data);
if (res == 0) cout << "Memory freed\n";
Data = 0;
break;

case EOF:
case '\n':
break;

case 'Q':

case 'q':
cout << "Exiting...\n";
return 0;

default:
Help () ;

if (res !'= 0 && res != -1)
cout << "Last function call failed!\n";

cout << "\n>";

bi

return 0;

int Help () {
cout << "1-8\t Open Tira on corresponding COM port\n"

"\t for example, '3' opens Tira on COM3\n"
"S\t Stops Tira\n"
"B\t attach Callback. Application will be able to receive IR signals\n"
"C\t activates capture mode\n"
"A\t cancels capture mode\n"
"T\t transmit the most recently captured IR code\n"
"D\t dispose data allocated for IR code\n";
"o\t Quit\n";

